Autoplay
Autocomplete
HTML5
Flash
Player
Speed
Previous Lecture
Complete and continue
Python for Finance
Introduction and environment preparation
Intro to the Course (9:56)
ทำไมเลือกใช้ภาษา Python (3:10)
เตรียม Python ให้พร้อม สำหรับใช้งาน (7:51)
ลง Quandl ด้วย Anaconda Navigator (5:28)
ถ้าไม่มีความรู้ด้านการเขียนโปรแกรมทำยังไง? (1:12)
ความรู้พื้นฐานที่จำเป็นก่อนเริ่มเรียน (Prerequisite)
ดาวโหลดซอสโค้ดได้จากที่ไหน? (2:32)
Course Resource
Section 1) การได้มาซึ่งข้อมูล และการสร้าง Function ในการดึงข้อมูลและการ Export เป็น CSV
Lecture: เราจะหาข้อมูลจากที่ไหนบ้าง (2:53)
รู้จักกับ Quandl (4:27)
Coding: โหลดข้อมูลจาก Quandl (6:01)
โหลดข้อมูลจาก Siamchart (2:53)
Coding: ดึงข้อมูลจาก Siamchart มาเป็น Dataframe (19:23)
Coding: Export CSV (2:00)
Coding: เขียน Function เรียกหุ้นรายตัวจาก Dataframe (11:21)
Lecture: Library 2 แบบ (5:03)
Coding: Import function จาก ไฟล์ .py ของเราเอง (4:23)
Coding: Export หุ้นรายตัวออกเป็น CSV (5:44)
Section 2) การจัดการข้อมูลเบื้องต้น
Lecture: ดูภาพรวมข้อมูล (5:20)
Coding: ดูภาพรวมข้อมูล .info() .Describe() (6:37)
Lecture: การจัดการ Dataframe (5:45)
Coding: เลือกช่วงเวลา (4:24)
Coding: การเข้าถึง Column (2:13)
Coding: การเข้าถึง Column แบบมีเงื่อนไข (7:09)
Lecture: การ Resample ข้อมูล (2:47)
Coding: Resample (8:30)
Lecture: การทำ Lead/Lag ช้อมูล และ Moving Average (2:53)
Coding: Lead/Lag (3:43)
Coding: Moving Average (3:34)
Coding: Subplot (5:07)
Coding: อธิบาย Subplot เพิ่มเติม (4:30)
Install Mpl Finance package (1:27)
Coding: Candlestick Plot (7:55)
Section 3) Clean&Normalization ข้อมูล
Lecture: การจัดการกับ Missing Value และการ Normalization ข้อมูล (3:30)
Coding: Missing Value (7:43)
Coding: Normalization (4:09)
Section 4) รู้จักกับหุ้นให้มากขึ้นด้วยทำความเข้าใจค่า Return, การแจกแจงของราคา และ ค่าทางสถิติอื่นๆ
Lecture: ว่าด้วย Return (6:27)
Coding: Simple Return (6:04)
Coding: Log Return (7:18)
Lecture: การแจงแจงปกติ(Normal Distribution) (10:47)
Coding: ว่าด้วยการ Random และ Histogram (10:11)
Lecture: สถิติว่าด้วยค่าเฉลี่ย(Mean) และ ค่ามัธยฐาน(Median) (2:50)
Coding: ค่าเฉลี่ย(Mean) และ ค่ามัธยฐาน(Median) (6:10)
Coding: ค่าเฉลี่ย(Mean) เปรียบเทียบ ค่ามัธยฐาน(Median) และการตีความ (4:23)
Coding: ตีความค่าเฉลี่ยและค่ามัธยฐานกับข้อมูลจริง (5:06)
Coding: Quartile และ Percentile (7:21)
Lecture: เข้าใจความแปรปรวน(Variance) และ ส่วนเบี่ยงเบนมาตรฐาน(Standard Deviation) (6:24)
Coding: ความแปรปรวน(Variance) และ ส่วนเบี่ยงเบนมาตรฐาน(Standard Deviation) (19:09)
Section 5) การวิเคราะห์ทิศทางการเคลื่อนที่ของราคาหุ้น ด้วยค่า Covariance และ Correlation
Lecture: ความแปรปรวนร่วมเกี่ยว(Covariance) และ สหสัมพันธ์(Correlation) (12:47)
Coding: Covariance (17:25)
Coding: Correlation (6:29)
Coding: ดูความสัมพันธ์ของหุ้นในตลาดหลักทรัพย์ด้วย Correlation (20:01)
Section 6) ดูการแจกแจงแบบ Fat Tail ด้วย Violion และ QQ Plot
Coding: QQ plot และ Violin plot (8:47)
Coding: ดูการแจกแจงข้อมูลจริงที่เป็น Fat tail กับข้อมูลที่แจกแจงตาม ทฤษฎี (4:06)
Section 7) เข้าใจ Finance ในการลงทุน
Lecture: Time Value of Money (5:05)
Coding: time value of money (13:02)
Lecture: Benchmark (2:01)
Lecture: Beta (2:43)
Lecture: Alpha (1:15)
Coding: มาคำนวณ Beta กัน (15:08)
Coding: Beta ไม่ใช่เป้านิ่ง (5:27)
Section 8) การวัดผลงานในตลาดหุ้น
Lecture: Drawdown and Volatility (2:41)
Coding: DrawDown (10:37)
Lecture: รู้จักกับตัววัดความเสี่ยง Sharpe Ratio (2:31)
Coding: Shape Ratio (11:19)
Lecture: CAGR (2:33)
Coding: CAGR (4:59)
Coding: แล้วเราทำนายถูกกี่เปอร์เซ็น Hit Rate (9:25)
Section 9) Modern Portfolio Theory
Lecture: การคำนวณผลงานของพอร์ตฟอลิโอ Portfolio Return (1:48)
Coding: Portfolio Return (9:56)
Lecture: การคำนวณความเสี่ยงของพอร์ตฟอลิโอ Portfolio Variance (5:40)
Coding: Portfolio Variance (6:54)
Lecture: ทฤษฎีพอร์ตโฟลิโอสมัยใหม่ Modern Portfolio Theory คืออะไร (9:22)
Coding: Modern Portfolio Theory(1) คำนวณแบบ Static vs Randoms (12:31)
Coding: Modern Portfolio Theory หาความน่าจะเป็น 1000 รูปแบบ (12:32)
Coding: Modern Portfolio Theory เลือกน้ำหนักของหุ้นในพอร์ตฟอลิโอด้วย Sharpe Ratio, Volatility ต่ำสุด และ กำไรสูงสุด (26:54)
Coding: Modern Portfolio Theory ผลกระทบจากหุ้นที่มี Correlation ต่อกันสูง (12:04)
Coding: Modern Portfolio Theory: ผลกระทบจากหุ้นที่มี Correlation ต่อกันต่ำ (3:53)
Section 10) VaR: Value at Risk
Lecture: ประเมินความเสี่ยงด้วย Value at Risk (6:08)
Coding: Value at Risk(Var) แบบไม่ใช้พารามิเตอร์ (9:25)
Coding: Value at Risk(Var) แบบใช้พารามิเตอร์ (9:31)
Section 11) Monte Carlo
Coding: Random Walk ดูความพฤติกรรมของข้อมูล Random (9:52)
Coding: Random Walk ดูพฤติกรรมของข้อมูลจริงเพื่อเปรียบเทียบ (3:35)
Lecture: ภาพรวม Monte Carlo (0:57)
Lecture: ทำไมเราต้องใช้ Monte Carlo (3:18)
Lecture: Monte Carlo for stock simulation (5:22)
Lecture: Monte Carlo ว่าด้วย Drift (4:37)
Lecture: Monte Carlo ว่าด้วย Volatility (8:40)
Lecture: Monte Carlo เอาทุกอย่างมารวมกัน (7:11)
Coding: Monte Carlo Part 1 (4:07)
Coding: Monte Carlo Part 2 (23:55)
Coding: Monte Carlo Var (12:12)
Coding: Monte Carlo bias ไบแอสของช่วงเวลาในการเลือกข้อมูล (16:33)
Section 12-13) Backtesting and Optimization
Lecture: Simple Backtest Part 1 (3:10)
Lecture: Simple Backtest Part 2 (4:06)
Coding: เตรียมข้อมูล (2:36)
Cooding: สร้างกลยุทธ์ Moving Average Crossover อย่างง่ายด้วยการ Vectorization (7:52)
Coding: คำนวณ Profit และ Loss (4:33)
Coding: วัดประสิทธิภาพในการลงทุน (14:52)
Coding: การใช้เงื่อนไขในการสร้างกลยุทธ์มากกว่า 1 เงื่อนไข Part 1 (6:16)
Coding: การใช้เงื่อนไขในการสร้างกลยุทธ์มากกว่า 1 เงื่อนไข Part 2 (7:09)
Lecture: Optimization (3:36)
Coding: Moving Average optimization Part 1 (16:22)
Coding: Moving Average optimization Part 2 (22:17)
Coding: Mean Reversal Part 1 (5:08)
Coding: Mean Reversal Part 2 (16:46)
Coding: Mean Reversal Optimization Part 1 (10:53)
Coding: Mean Reversal Optimization Part 2 (10:36)
Coding: Mean Reversal Optimization Part 3 (4:25)
Section14: Machine Learning
Lecture: Introduction to Machine Learning (6:32)
Lecture: Types of Machine Learning (4:41)
Lecture: Regression (3:32)
Lecture: Linear Regression (7:23)
Lecture: Multiple linear regression (2:34)
Coding: Linear Regression รีวิว Part 1 คอนเซ็ป (14:07)
Coding: Linear Regression รีวิว Part 2 ข้อมูลที่มี Noise (5:24)
Coding: Linear Regression รีวิว Part 3 ในมุมมองของ Time Series (13:00)
Coding: Linear Regression รีวิว Part 4 ใช้ SKlearn (8:30)
Coding: Linear Regression ทำนายข้อมูลจริง Part 1 ราคาปิด (5:54)
Coding: Linear Regression ทำนายข้อมูลจริง Part 2 การแบ่งข้อมูล Train/Test (6:03)
Coding: Linear Regression ทำนายข้อมูลจริง Part 3 การวัดผล (11:56)
Lecture: Backtesting ML strategies (6:37)
Coding: Linear Regression ทำนาย Return ของข้อมูลจริง Part 1 ทำนาย Return (5:44)
Coding: Linear Regression ทำนาย Return ของข้อมูลจริง Part 2 แบ่งข้อมูล Train/Test (5:26)
Coding: Linear Regression ทำนาย Return ของข้อมูลจริง Part 3 train model และทำนายผล (12:00)
Coding: Linear Regression ทำนาย Return ของข้อมูลจริง Part 4 Simulation และ การวัดประสิทธิภาพ (12:09)
Lecture: What is Logistic regression? (5:38)
Lecture: How does Logistic regression work? (5:14)
Coding: Logistic Regression รีวิว Part 1 (3:22)
Coding: Logistic Regression รีวิว Part 2 (16:56)
Coding: Logistic Regression ทำนายทิศทางข้อมูลจริง Part 1 เตรียมข้อมูล (4:45)
Coding: Logistic Regression ทำนายทิศทางข้อมูลจริง Part 2 แบ่งข้อมูล Train/Test (5:32)
Coding: Logistic Regression ทำนายทิศทางข้อมูลจริง Part 3 train model และทำนายผล (4:42)
Coding: Logistic Regression ทำนายทิศทางข้อมูลจริง Part 4 Simulation และวัดประสิทธิภาพ (12:17)
Lecture: อะไรคือ K-Nearest Neighbour(KNN) (9:02)
Coding: KNN - รีวิว Part 1 สร้างข้อมูลเสมือน (7:46)
Coding: KNN - รีวิว Part 2 แบ่งข้อมูล Train/Test (2:29)
Coding: KNN - รีวิว Part 3 train model และทำนายผล (11:09)
Coding: KNN - รีวิว Part 4 การวัดผล (4:25)
Coding: KNN - รีวิว Part 5 ข้อมูลที่ Unbalanced (7:06)
Coding: KNN ทำนายทิศทางข้อมูลจริง Part 1 เตรียมข้อมูล และ แบ่งข้อมูล Train/Test (3:37)
Coding: KNN ทำนายทิศทางข้อมูลจริง Part 2 Train model และทำนายผล (4:37)
Coding: KNN ทำนายทิศทางข้อมูลจริง Part 3 Simulation และวัดประสิทธิภาพ (11:06)
Technical Indicator with Talib
Install TA-Lib (2:58)
Talib Resource
Coding: Momentum - Simple, Exponential, Double Exponential Moving Average(SMA EMA DEMA) (10:28)
Coding: Momentum - Plus Directional Indicator (+DI), Minus Directional Indicator (-DI) (5:32)
Coding: Momentum - Directional Movement Index (DX), Average Directional Movement Index (ADX) (7:09)
Coding: Oscillator - Relative Strength Index(RSI) (4:44)
Coding: Overlap Studies - Bollinger Bands (6:11)
Coding: Volume - On balance volume (OBV) (5:38)
Coding: Volatility Indicators - True Range(TR) Average true range(ATR) (10:38)
Coding: Candlestick Pattern part1 (11:03)
Coding: Candlestick Pattern part2 (7:38)
Coding: แล้วเราทำนายถูกกี่เปอร์เซ็น Hit Rate
Lecture content locked
If you're already enrolled,
you'll need to login
.
Enroll in Course to Unlock